Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; : e16287, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366679

RESUMO

PREMISE: Whole-genome duplication (neopolyploidy) can instantly differentiate the phenotype of neopolyploids from their diploid progenitors. These phenotypic shifts in organs such as roots and leaves could also differentiate the way neopolyploids interact with microbial species. While some studies have addressed how specific microbial interactions are affected by neopolyploidy, we lack an understanding of how genome duplication affects the diversity and composition of microbial communities. METHODS: We performed a common garden experiment with multiple clones of artificially synthesized autotetraploids and their ancestral diploids, derived from 13 genotypes of wild strawberry, Fragaria vesca. We sequenced epiphytic bacteria and fungi from roots and leaves and characterized microbial communities and leaf functional traits. RESULTS: Autotetraploidy had no effect on bacterial alpha diversity of either organ, but it did have a genotype-dependent effect on the diversity of fungi on leaves. In contrast, autotetraploidy restructured the community composition of leaf bacteria and had a genotype-dependent effect on fungal community composition in both organs. The most differentially abundant bacterial taxon on leaves belonged to the Sphingomonas, while a member of the Trichoderma was the most differentially abundant fungal taxon on roots. Ploidy-induced change in leaf size was strongly correlated with a change in bacterial but not fungal leaf communities. CONCLUSIONS: Genome duplication can immediately alter aspects of the plant microbiome, but this effect varies by host genotype and bacterial and fungal community. Expanding these studies to wild settings where plants are exposed continuously to microbes are needed to confirm the patterns observed here.

2.
Mol Ecol ; 32(21): 5849-5863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750335

RESUMO

Whole-genome duplication has long been appreciated for its role in driving phenotypic novelty in plants, often altering the way organisms interface with the abiotic environment. Only recently, however, have we begun to investigate how polyploidy influences interactions of plants with other species, despite the biotic niche being predicted as one of the main determinants of polyploid establishment. Nevertheless, we lack information about how polyploidy affects the diversity and composition of the microbial taxa that colonize plants, and whether this is genotype-dependent and repeatable across natural environments. This information is a first step towards understanding whether the microbiome contributes to polyploid establishment. We, thus, tested the immediate effect of polyploidy on the diversity and composition of the bacterial microbiome of the aquatic plant Spirodela polyrhiza using four pairs of diploids and synthetic autotetraploids. Under controlled conditions, axenic plants were inoculated with pond waters collected from 10 field sites across a broad environmental gradient. Autotetraploids hosted 4%-11% greater bacterial taxonomic and phylogenetic diversity than their diploid progenitors. Polyploidy, along with its interactions with the inoculum source and genetic lineage, collectively explained 7% of the total variation in microbiome composition. Furthermore, polyploidy broadened the core microbiome, with autotetraploids having 15 unique bacterial taxa in addition to the 55 they shared with diploids. Our results show that whole-genome duplication directly leads to novelty in the plant microbiome and importantly that the effect is dependent on the genetic ancestry of the polyploid and generalizable over many environmental contexts.

3.
Ecology ; 104(7): e4054, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37082928

RESUMO

Functional traits fall along a continuum from resource conservative to acquisitive and are powerful predictors of the ecological settings necessary for a species to persist and establish. As a consequence, a major problem that functional trait analysis could address is understanding the ecological contexts necessary for the persistence of polyploid plants, because early generation polyploids, or "neopolyploids," are at a high extinction risk. Because neopolyploidy could increase nutrient limitation, growth strategies should shift to accommodate the increased need for resources, but this prediction is untested. To address this gap, we compared the functional trait responses of diploids, synthetic neotetraploids, and naturally occurring tetraploids of Heuchera cylindrica, an herbaceous perennial plant, to nutrient manipulations in a greenhouse experiment. We found strong support for the hypothesis that neotetraploidy increases nutrient requirements, as evidenced by reduced productivity and increased tissue concentrations of nitrogen and phosphorus in neotetraploids. We also found that the repeated formation of independent origins of neotetraploidy led to differing responses to nutrient supply, but neotetraploidy generally shifted functional traits to be more resource acquisitive and inefficient. Taken together, our results suggest that shifts in functional trait responses may constrain the ability of neopolyploids to establish in nutrient-poor habitats.


Assuntos
Heuchera , Poliploidia , Tetraploidia , Fenótipo , Ecossistema , Plantas
4.
New Phytol ; 238(3): 1294-1304, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740596

RESUMO

Ecological theory predicts that early generation polyploids ('neopolyploids') should quickly go extinct owing to the disadvantages of rarity and competition with their diploid progenitors. However, polyploids persist in natural habitats globally. This paradox has been addressed theoretically by recognizing that reproductive assurance of neopolyploids and niche differentiation can promote establishment. Despite this, the direct effects of polyploidy at the population level remain largely untested despite establishment being an intrinsically population-level process. We conducted population-level experiments where life-history investment in current and future growth was tracked in four lineage pairs of diploids and synthetic autotetraploids of the aquatic plant Spirodela polyrhiza. Population growth was evaluated with and without competition between diploids and neopolyploids across a range of nutrient treatments. Although neopolyploid populations produce more biomass, they reach lower population sizes and have reduced carrying capacities when growing alone or in competition across all nutrient treatments. Thus, contrary to individual-level studies, our population-level data suggest that neopolyploids are competitively inferior to diploids. Conversely, neopolyploid populations have greater investment in dormant propagule production than diploids. Our results show that neopolyploid populations should not persist based on current growth dynamics, but high potential future growth may allow polyploids to establish in subsequent seasons.


Assuntos
Diploide , Crescimento Demográfico , Poliploidia , Ecossistema , Reprodução
5.
Curr Opin Insect Sci ; 47: 46-52, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33771734

RESUMO

Insect mutualisms are essential for reproduction of many plants, protection of plants and other insects, and provisioning of nutrients for insects. Disruption of these mutualisms by global change can have important implications for ecosystem processes. Here, we assess the general effects of global change on insect mutualisms, including the possible impacts on mutualistic networks. We find that the effects of global change on mutualisms are extremely variable, making broad patterns difficult to detect. We require studies focusing on changes in cost-benefit ratios, effects of partner dependency, and degree of specialization to further understand how global change will influence insect mutualism dynamics. We propose that rapid coevolution is one avenue by which mutualists can ameliorate the effects of global change.


Assuntos
Ecossistema , Simbiose , Animais , Insetos , Plantas
6.
Am J Bot ; 106(6): 894-900, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31162645

RESUMO

PREMISE: Polyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth-limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth-limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists. METHODS: We used Heuchera cylindrica (Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence of AMF in H. cylindrica, and then we used field-collected specimens to quantify and compare the presence of AMF structures while controlling for site-specific variation. RESULTS: Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional-exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. CONCLUSIONS: The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional-exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with their AMF partners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy on AMF colonization.


Assuntos
Heuchera/genética , Micorrizas/fisiologia , Poliploidia , Simbiose , Heuchera/microbiologia , Heuchera/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Simbiose/genética
7.
Am J Bot ; 106(3): 469-476, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901499

RESUMO

PREMISE OF THE STUDY: Polyploidy, or whole genome duplication (WGD), is common in plants despite theory suggesting that polyploid establishment is challenging and polyploids should be evolutionarily transitory. There is renewed interest in understanding the mechanisms that could facilitate polyploid establishment and explain their pervasiveness in nature. In particular, premating isolation from their diploid progenitors is suggested to be a crucial factor. To evaluate how changes in assortative mating occur, we need to understand the phenotypic effects of WGD on reproductive traits. METHODS: We used literature surveys and a meta-analysis to assess how WGD affects floral morphology, flowering phenology, and reproductive output in plants. We focused specifically on comparisons of newly generated polyploids (neopolyploids) and their parents to mitigate potential confounding effects of adaptation and drift that may be present in ancient polyploids. KEY RESULTS: The results indicated that across a broad representation of angiosperms, floral morphology traits increased in size, reproductive output decreased, and flowering phenology was unaffected by WGD. Additionally, we found that increased trait variation after WGD was uncommon for the phenotypic traits examined. CONCLUSIONS: Our results suggest that the phenotypic effects on traits important to premating isolation of neopolyploids are small, in general. Changes in flowering phenology, reproductive output, and phenotypic variation resulting from WGD may be less critical in facilitating premating isolation and neopolyploid establishment. However, floral traits for which size is an important component of function (e.g., pollen transfer) could be strongly influenced by WGD.


Assuntos
Flores/fisiologia , Duplicação Gênica , Magnoliopsida/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Reprodução/fisiologia
8.
Am J Bot ; 103(7): 1326-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27370313

RESUMO

Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species.


Assuntos
Abelhas/fisiologia , Genoma de Planta/genética , Plantas/genética , Poliploidia , Seleção Genética , Animais , Evolução Biológica , Diploide , Flores/genética , Flores/fisiologia , Interações Hospedeiro-Patógeno , Fenômenos Fisiológicos Vegetais , Polinização , Dispersão de Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...